Вектором называется направленный отрезок, имеющий определенную длину, т. е. отрезок определенной длины, у которого одна из ограничивающих его точек принимается за начало, а вторая - за конец. Если А - начало вектора и В - его конец, то вектор обозначается символом $\overrightarrow{АВ}$ (или $\overline{АВ}$). Обычно векторы обозначают одной малой латинской буквой со стрелкой (или с чертой) либо выделяют жирным шрифтом: $\overrightarrow{a}\,\,\ \overline{a}\,\,\ {\bf а}$ . Вектор изображается отрезком со стрелкой на конце (рис.1).
Длина вектора $\overrightarrow{АВ}$ называется его абсолютной величиной или модулем и обозначается символом $|\overrightarrow{АВ}|$.
Вектор $\overrightarrow{a}$, у которого $|\overrightarrow{a}| = 1$ , называется единичным.
Вектор называется нулевым (обозначается $\overrightarrow{0}$ или ${\bf 0}$), если начало и конец его совпадают. Нулевой вектор не имеет определенного направления и имеет длину, равную нулю.
Векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ расположенные на одной прямой или на параллельных прямых, называются коллинеарными. Нулевой вектор коллинеарен любому вектору.
Два вектора $\overrightarrow{a}$ и $\overrightarrow{b}$ называются равными, если они коллинеарны, имеют одинаковую длину и одинаковое направление. В этом случае пишут $\overrightarrow{a} = \overrightarrow{b}$ . Все нулевые векторы считаются равными.
Из определения равенства векторов непосредственно следует, что, каковы бы ни были вектор $\overrightarrow{a}$ и точка Р, существует, и притом единственный, вектор $\overrightarrow{PQ}$ с началом в точке Р, равный вектору $\overrightarrow{a}$ . В самом деле, существует лишь одна прямая, проходящая через точку Р и параллельная той прямой, на которой лежит вектор $\overrightarrow{a}$ . На указанной прямой существует единственная точка Q такая, что отрезок PQ имеет длину, равную длине вектора $\overrightarrow{a}$ , и направлен в ту же сторону, что и вектор $\overrightarrow{a}$ . Таким образом, вектор можно переносить параллельно самому себе, помещая его начало в любую точку плоскости.
Пример 1. Рассмотрим квадрат ABCD (рис. 120).
На основании определения равенства векторов можно записать $\overrightarrow{AD} = \overrightarrow{ВС} \,и\, \overrightarrow{АВ} = \overrightarrow{DC} \,но\, \overrightarrow{AB} \neq \overrightarrow{AD}\,\, \overrightarrow{ВС} \neq \overrightarrow{DC}\,\, хотя \overrightarrow{|АВ|} = \overrightarrow{|AD|} = \overrightarrow{|ВС|} = \overrightarrow{|DC|} $ .
Пример 2. Какой вид имеет четырехугольник ABCDy если известно, что $\overrightarrow{AD} = \overrightarrow{ВС}$ ?
Решение. Из равенства $\overrightarrow{AD} = \overrightarrow{ВС}$ следует, что стороны AD и ВС в четырехугольнике равны и параллельны и, значит (теорема 2), он параллелограмм.
Два коллинеарных вектора (отличные от нулевых векторов), имеющие равные модули, но противоположно направленные, называются противоположными.
Вектор, противоположный вектору $\overrightarrow{a}$, обозначается $-\overrightarrow{a}$. Для вектора $\overrightarrow{AB}$ противоположным является вектор $\overrightarrow{BA}$ .
Содержание статьи
ВЕКТОР. В физике и математике вектор – это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент, импульс, напряженность электрического и магнитного полей. Их можно противопоставить другим величинам, таким, как масса, объем, давление, температура и плотность, которые можно описать обычным числом, и называются они «скалярами».
Векторная запись используется при работе с величинами, которые невозможно задать полностью с помощью обычных чисел. Например, мы хотим описать положение предмета относительно некоторой точки. Мы можем сказать, сколько километров от точки до предмета, но не можем полностью определить его местоположение, пока не узнаем направление, в котором он находится. Таким образом, местонахождение предмета характеризуется численным значением (расстоянием в километрах) и направлением.
Графически векторы изображаются в виде направленных отрезков прямой определенной длины, как на рис. 1. Например, для того чтобы представить графически силу в пять килограммов, надо нарисовать отрезок прямой длиной в пять единиц в направлении действия силы. Стрелка указывает, что сила действует от A к B ; если бы сила действовала от B к A , то мы бы записали или . Для удобства векторы обычно обозначаются полужирными прописными буквами (A , B , C и так далее); векторы A и –A имеют равные численные значения, но противоположны по направлению. Численное значение вектора А называется модулем или длиной и обозначается A или |A |. Это величина, конечно, скаляр. Вектор, начало и конец которого совпадают, называется нулевым и обозначается O .
Два вектора называются равными (или свободными ), если их модули и направления совпадают. В механике и физике этим определением, однако, надо пользоваться с осторожностью, так как две равных силы, приложенные к различным точкам тела в общем случае будут приводить к различным результатам. В связи с этим векторы подразделяются на «связанные» или «скользящие», следующим образом:
Связанные векторы имеют фиксированные точки приложения. Например, радиус-вектор указывает положение точки относительно некоторого фиксированного начала координат. Связанные векторы считаются равными, если у них совпадают не только модули и направления, но они имеют и общую точку приложения.
Скользящими векторами называются равные между собой векторы, расположенные на одной прямой.
Сложение векторов.
Идея сложения векторов возникла из того, что мы можем найти единственный вектор, который оказывает то же воздействие, что и два других вектора вместе. Если для того, чтобы попасть в некоторую точку, нам надо пройти сначала A километров в одном направлении и затем B километров в другом направлении, то мы могли бы достичь нашей конечной точки пройдя C километров в третьем направлении (рис. 2). В этом смысле можно сказать, что
A + B = C .
Вектор C называется «результирующим вектором» A и B , он задается построением, показанным на рисунке; на векторах A и B как на сторонах построен параллелограмм, а C – диагональ, соединяющая начало А и конец В . Из рис. 2 видно, что сложение векторов «коммутативно», т.е.
A + B = B + A .
Аналогичным образом можно сложить несколько векторов, последовательно соединяя их «непрерывной цепочкой», как показано на рис. 3 для трех векторов D , E и F . Из рис. 3 также видно, что
(D + E ) + F = D + (E + F ),
т.е. сложение векторов ассоциативно. Суммировать можно любое число векторов, причем векторы необязательно должны лежать в одной плоскости. Вычитание векторов представляется как сложение с отрицательным вектором. Например,
A – B = A + (–B ),
где, как определялось ранее, –B – вектор, равный В по модулю, но противоположный по направлению.
Это правило сложения может теперь использоваться как реальный критерий проверки, является ли некоторая величина вектором или нет. Перемещения обычно подчиняются условиям этого правила; то же можно сказать и о скоростях; силы складываются таким же образом, как можно было видеть из «треугольника сил». Однако, некоторые величины, обладающие как численными значениями так и направлениями, не подчиняются этому правилу, поэтому не могут рассматриваться как векторы. Примером являются конечные вращения.
Умножение вектора на скаляр.
Произведение m A или A m , где m (m № 0) – скаляр, а A – ненулевой вектор, определяется как другой вектор, который в m раз длиннее A и имеет тоже направление что и A , если число m положительно, и противоположное, если m отрицательно, как показано на рис. 4, где m равно 2 и –1/2 соответственно. Кроме того, 1A = A , т.е. при умножении на 1 вектор не изменяется. Величина –1A – вектор, равный A по длине, но противоположный по направлению, обычно записывается как –A . Если А – нулевой вектор и(или) m = 0, то m A – нулевой вектор. Умножение дистрибутивно, т.е.
Мы можем складывать любое число векторов, причем порядок слагаемых не влияет на результат. Верно и обратное: любой вектор раскладывается на две или более «компоненты», т.е. на два вектора или более, которые, будучи сложенными, в качестве результирующего дадут исходный вектор. Например, на рис. 2, A и B – компоненты C .
Многие математические действия с векторами упрощаются, если разложить вектор на три компоненты по трем взаимно перпендикулярным направлениям. Выберем правую систему декартовых координат с осями Ox , Oy и Oz как показано на рис. 5. Под правой системой координат мы подразумеваем, что оси x , y и z располагаются так, как могут быть расположены соответственно большой, указательный и средний пальцы правой руки. Из одной правой системы координат всегда можно получить другую правую систему координат соответствующим вращением. На рис. 5, показано разложение вектор A на три компоненты и . Они в сумме составляют вектор A , так как
Можно было бы также сначала сложить и получить , а затем к прибавить .
Проекции вектора А на три координатные оси, обозначенные A x , A y и A z называются «скалярными компонентами» вектора A :
где a , b и g – углы между A и тремя координатными осями. Теперь введем три вектора единичной длины i , j и k (орты), имеющие то же самое направление, что и соответствующие оси x , y и z . Тогда, если A x умножить на i , то полученное произведение – это вектор, равный , и
Два вектора равны тогда и только тогда, когда равны их соответствующие скалярные компоненты. Таким образом, A = B тогда и только тогда, когда A x = B x , A y = B y , A z = B z .
Два вектора можно сложить, складывая их компоненты:
Кроме того, по теореме Пифагора:
Линейные функции.
Выражение a A + b B , где a и b – скаляры, называется линейной функцией векторов A и B . Это вектор, находящийся в той же плоскости, что A и B ; если A и B не параллельны, то при изменении a и b вектор a A + b B будет перемещаться по всей плоскости (рис. 6). Если A , B и C не все лежат в одной плоскости, то вектор a A + b B + c C (a , b и c изменяются) перемещается по всему пространству. Предположим, что A , B и C – единичные векторы i , j и k . Вектор a i лежит на оси x ; вектор a i + b j может перемещаться по всей плоскости xy ; вектор a i + b j + c k может перемещаться по всему пространству.
Можно было бы выбрать четыре взаимно перпендикулярных вектора i , j , k и l и определить четырехмерный вектор как величину
A = A x i + A y j + A z k + A w l
а можно было бы продолжать до пяти, шести или любого числа измерений. Хотя визуально такой вектор представить невозможно, никаких математических трудностей здесь не возникает. Такая запись часто бывает полезна; например, состояние движущейся частицы описывается шестимерным вектором P (x , y , z , p x , p y , p z ), компоненты которого – ее положение в пространстве (x , y , z ) и импульс (p x , p y , p z ). Такое пространство называется «фазовым пространством»; если мы рассматриваем две частицы, то фазовое пространство 12-мерное, если три, то 18-ти и так далее. Число размерностей можно неограниченно увеличивать; при этом величины, с которыми мы будем иметь дело, ведут себя во многом также, как те, которые мы рассмотрим в оставшейся части этой статьи, а именно, трехмерные векторы.
Умножение двух векторов.
Правило сложения векторов было получено путем изучения поведения величин, представленных векторами. Нет никаких видимых причин, по которым два вектора нельзя было бы каким-либо образом перемножить, однако это умножение будет иметь смысл только в том случае, если можно показать его математическую состоятельность; кроме того, желательно, чтобы произведение имело определенный физический смысл.
Существуют два способа умножения векторов, которые соответствуют этим условиям. Результатом одного из них является скаляр, такое произведение называется «скалярным произведением» или «внутренним произведением» двух векторов и записывается A Ч B или (A , B ). Результатом другого умножения является вектор, называемый «векторным произведением» или «внешним произведением» и записывается A ґ B или [A , B ]. Скалярные произведения имеют физический смысл для одного-, двух- или трех измерений, тогда как векторные произведения определены только для трех измерений.
Скалярные произведения.
Если под действием некоторой силы F точка, к которой она приложена, перемещается на расстояние r , то выполненная работа равна произведению r и компоненты F в направлении r . Эта компонента равна F cos б F , r с , где б F , r с – угол между F и r , т.е.
Произведенная работа = Fr cos б F , r с .
Это – пример физического обоснования скалярного произведения, определенного для любых двух векторов A , B посредством формулы
AЧ B = AB cos б A , B с .
Так как все величины правой части уравнения – скаляры, то
A Ч B = B Ч A ;
следовательно, скалярное умножение коммутативно.
Скалярное умножение также обладает свойством дистрибутивности:
A Ч (B + С ) = A Ч B + A Ч С .
Если векторы A и B перпендикулярны, то cos б A , B с равен нулю, и, поэтому, A Ч B = 0, даже если ни A ,ни B не равны нулю. Именно поэтому мы не можем делить на вектор. Допустим, что мы разделили обе части уравнения A Ч B = A Ч C на A . Это дало бы B = C , и, если бы можно было бы выполнить деление, то это равенство стало бы единственным возможным результатом. Однако, если мы перепишем уравнение A Ч B = A Ч C в виде A Ч (B – C ) = 0 и вспомним, что (B – C ) – вектор, то ясно, что (B – C ) необязательно равен нулю и, следовательно, B не должен быть равным C . Эти противоречивые результаты показывают, что векторное деление невозможно.
Скалярное произведение дает еще один способ записи численного значения (модуля) вектора:
A Ч A = AA Ч cos 0° = A 2 ;
Скалярное произведение можно записать и другим способом. Для этого вспомним, что:
A = A x i + A y j + A z k .
Поскольку последнее уравнение содержит x , y и z в качестве нижних индексов, уравнение, казалось бы, зависит от выбранной конкретной системы координат. Однако это не так, что видно из определения, которое не зависит от выбранных координатных осей.
Векторные произведения.
Векторным или внешним произведением векторов называется вектор, модуль которого равен произведению их модулей на синус угла, перпендикулярный исходным векторам и составляющий вместе с ними правую тройку. Это произведение легче всего ввести, рассматривая соотношение между скоростью и угловой скоростью. Первая – вектор; мы теперь покажем, что последнюю также можно интерпретировать как вектор.
Угловая скорость вращающегося тела определяется следующим образом: выберем любую точку на теле и проведем перпендикуляр из этой точки до оси вращения. Тогда угловая скорость тела – это число радиан, на которые эта линия повернулась за единицу времени.
Если угловая скорость – вектор, она должна иметь численное значение и направление. Численное значение выражается в радианах в секунду, направление можно выбрать вдоль оси вращения, можно его определить, направив вектор в том направлении, в котором двигался бы правосторонний винт при вращении вместе с телом.
Рассмотрим вращение тела вокруг фиксированной оси. Если установить эту ось внутри кольца, которое в свою очередь закреплено на оси, вставленной внутрь другого кольца, мы можем придать вращение телу внутри первого кольца с угловой скоростью w 1 и затем заставить внутреннее кольцо (и тело) вращаться с угловой скоростью w 2.Рисунок 7 поясняет суть дела; круговые стрелки показывают направления вращения. Данное тело – это твердая сфера с центром О и радиусом r .
Придадим этому телу движение, которое является суммой двух различных угловых скоростей. Это движение довольно трудно представить наглядно, но достаточно очевидно, что тело больше не вращается относительно фиксированной оси. Однако все-таки можно сказать, что оно вращается. Чтобы показать это, выберем некоторую точку P на поверхности тела, которая в рассматриваемый нами момент времени находится на большом круге, соединяющем точки, в которых две оси пересекают поверхность сферы. Опустим перпендикуляры из P на оси. Эти перпендикуляры станут радиусами PJ и PK окружностей PQRS и PTUW соответственно. Проведем прямую POP ў , проходящую через центр сферы. Теперь точка P , в рассматриваемый момент времени одновременно перемещается по окружностям, которые соприкасаются в точке P . За малый интервал времени D t , P перемещается на расстояние
Это расстояние равно нулю, если
В этом случае точка P находится в состоянии мгновенного покоя, и точно также все точки на прямой POP ў . Остальная часть сферы будет в движении (окружности, по которым перемещаются другие точки, не касаются, а пересекаются). POP ў является, таким образом, мгновенной осью вращения сферы, подобно тому, как колесо, катящееся по дороге в каждый момент времени, вращается относительно своей нижней точки.
Чему равна угловая скорость сферы? Выберем для простоты точку A , в которой ось w 1 пересекает поверхность. В момент времени, который мы рассматриваем, она перемещается за время D t на расстояние
по кругу радиуса r sin w 1. По определению, угловая скорость
Из этой формулы и соотношения (1) мы получим
Другими словами, если записать численное значение и выбрать направление угловой скорости так, как это описано выше, то эти величины складываются как векторы и могут быть рассмотрены как таковые.
Теперь можно ввести векторное произведение; рассмотрим тело, вращающееся с угловой скоростью w . Выберем любую точку P на теле и любое начало координат О , которое находится на оси вращения. Пусть r – вектор, направленный от О к P . Точка P движется по окружности со скоростью
V = w r sin (w , r ).
Вектор скорости V является касательным к окружности и указывает в направлении, показанном на рис. 8.
Это уравнение дает зависимость скорости V точки от комбинации двух векторов w и r . Используем это соотношение, чтобы определить новый вид произведения, и запишем:
V = w ґ r .
Так как результатом такого умножения является вектор, это произведение названо векторным. Для любых двух векторов A и B , если
A ґ B = C ,
C = AB sin б A , B с ,
и направление вектора C таково, что он перпендикулярен плоскости, проходящей через А и B и указывает в направлении, совпадающем с направлением движения правовращающегося винта, если он параллелен C и вращается от A к B . Другими словами, мы можем сказать, что A , B и C , расположенные в таком порядке, образуют правый набор координатных осей. Векторное произведение антикоммутативно; вектор B ґ A имеет тот же модуль, что и A ґ B , но направлен в противоположную сторону:
A ґ B = –B ґ A .
Это произведение дистрибутивно, но не ассоциативно; можно доказать, что
Посмотрим, как записывается векторное произведение в терминах компонент и единичных векторов. Прежде всего, для любого вектора A ,
A ґ A = AA sin 0 = 0.
Следовательно, в случае единичных векторов,
i ґ i = j ґ j = k ґ k =0
i ґ j = k , j ґ k = i , k ґ i = j .
Это равенство также можно записать в виде определителя:
Если A ґ B = 0 , то либо A или B равно 0 , либо A и B коллинеарны. Таким образом, как и в случае скалярного произведения, деление на вектор невозможно. Величина A ґ B равна площади параллелограмма со сторонами A и B . Это легко видеть, так как B sin б A , B с – его высота и A – основание.
Существует много других физических величин, которые являются векторными произведениями. Одно из наиболее важных векторных произведений появляется в теории электромагнетизма и называется вектором Пойтинга P . Этот вектор задается следующим образом:
P = E ґ H ,
где E и H – векторы электрического и магнитного полей соответственно. Вектор P можно рассматривать как заданный поток энергии в ваттах на квадратный метр в любой точке. Приведем еще несколько примеров: момент силы F (крутящий момент) относительно начала координат, действующей на точку, радиус-вектор которой r , определяется как r ґ F ; частица, находящаяся в точке r , массой m и скоростью V , имеет угловой момент m r ґ V относительно начала координат; сила, действующая на частицу, несущую электрический заряд q через магнитное поле B со скоростью V , есть q V ґ B .
Тройные произведения.
Из трех векторов мы можем сформировать следующие тройные произведения: вектор (A Ч B ) ґ C ; вектор (A ґ B) ґ C ; скаляр (A ґ B )Ч C .
Первый тип – произведение вектора C и скаляра A Ч B ; о таких произведениях мы уже говорили. Второй тип называется двойным векторным произведением; вектор A ґ B перпендикулярен к плоскости, где лежат A и B , и поэтому (A ґ B )ґ C – вектор, лежащий в плоскости A и B и перпендикулярный C . Следовательно, в общем случае, (A ґ B )ґ C № A ґ (B ґ C ). Записав A , B и C через их координаты (компоненты) по осям x , y и z и умножив, можно показать, что A ґ (B ґ C ) = B ґ (A Ч C ) – Cґ (A Ч B ). Третий тип произведения, который возникает при расчетах решетки в физике твердого тела, численно равен объему параллелепипеда с ребрами A , B , C . Так как (A ґ B )Ч C = A Ч (B ґ C ), знаки скалярного и векторного умножений можно менять местами, и произведение часто записывается как (A B C ). Это произведение равно определителю
Заметим, что (A B C ) = 0, если все три вектора лежат в одной и той же плоскости или, если А = 0 или (и) В = 0 или (и) С = 0 .
ДИФФЕРЕНЦИРОВАНИЕ ВЕКТОРА
Предположим, что вектор U является функцией одной скалярной переменной t . Например, U может быть радиус-вектором, проведенным из начала координат до перемещающейся точки, а t – временем. Пусть t изменится на небольшую величину D t , что приведет к изменению U на величину D U . Это показано на рис. 9. Отношение D U /D t – вектор, направленный в том же направлении, что и D U . Мы можем определить производную U по t , как
при условии, что такой предел существует. С другой стороны, можно представить U как сумму компонент по трем осям и записать
Если U – радиус-вектор r , то d r /dt – скорость точки, выраженная как функция времени. Продифференцировав по времени еще раз, мы получим ускорение. Предположим, что точка перемещается вдоль кривой, показанной на рис. 10. Пусть s – расстояние, пройденное точкой вдоль кривой. В течение малого интервала времени D t точка пройдет расстояние D s вдоль кривой; положение радиус-вектора изменится на D r . Следовательно D r /D s – вектор направленный как D r . Далее
есть единичный вектор, касательный к кривой. Это видно из того, что при приближении точки Q к точке P , PQ приближается к касательной и D r приближается к D s.
Формулы для дифференцирования произведения подобны формулам для дифференцирования произведения скалярных функций; однако, так как векторное произведение антикоммутативно, порядок умножения должен быть сохранен. Поэтому,
Таким образом, мы видим, что, если вектор является функцией одной скалярной переменной, то мы можем представить производную почти также, как в случае скалярной функции.
Вектор и скалярные поля.
Градиент.
В физике часто приходится иметь дело с векторными или скалярными величинами, которые меняются от точки к точке в заданной области. Такие области называются «полями». Например, скаляр может быть температурой или давлением; вектор может быть скоростью движущейся жидкости или электростатическим полем системы зарядов. Если мы выбрали некоторую систему координат, то любой точке P (x , y , z ) в заданной области соответствует некоторый радиус-вектор r (= x i + y j + z k ) и также значение векторной величины U (r ) или скаляра f (r ), связанных с ним. Предположим, что U и f определены в области однозначно; т.е. каждой точке соответствует одна и только одна величина U или f , хотя различные точки могут, конечно, иметь различные значения. Допустим, что мы хотим описать скорость, с которой U и f изменяются при передвижении по этой области.
Простые частные производные, такие, как ¶ U /¶ x и ¶f /¶ y, нас не устраивают, потому что они зависят от конкретно выбранных координатных осей. Однако можно ввести векторный дифференциальный оператор, независимый от выбора осей координат; этот оператор называется «градиентом».
Пусть мы имеем дело со скалярным полем f . Сначала в качестве примера рассмотрим контурную карту области страны. В этом случае f – высота над уровнем моря; контурные линии соединяют точки с одним и тем же значением f . При движении вдоль любой из этих линий f не меняется; если двигаться перпендикулярно этим линиям, то скорость изменения f будет максимальной. Мы можем каждой точке сопоставить вектор, указывающий величину и направление максимального изменения скорости f ; такая карта и некоторые из этих векторов показаны на рис. 11. Если мы проделаем это для каждой точки поля, то получим векторное поле, связанное со скалярным полем f . Это поле вектора, называемого «градиентом» f , который записывается как grad f или Сf (символ С также называется «набла»).
В случае трех измерений, контурные линии становятся поверхностями. Малое смещение D r (= i D x + j D y + k D z ) приводит к изменению f , которое записывается как
где точками обозначены члены более высоких порядков. Это выражение можно записать в виде скалярного произведения
Разделим правую и левую части этого равенства на D s , и пусть D s стремится к нулю; тогда
где d r /ds – единичный вектор в выбранном направлении. Выражение в круглых скобках – вектор, зависящий от выбранной точки. Таким образом, df /ds имеет максимальное значение, когда d r /ds указывает в том же направлении, выражение, стоящее в скобках, является градиентом. Таким образом,
– вектор, равный по величине и совпадающий по направлению с максимальной скоростью изменения f относительно координат. Градиент f часто записывается в виде
Это означает, что оператор С существует сам по себе. Во многих случаях он ведет себя, как вектор, и фактически является «векторным дифференциальным оператором» – одним из наиболее важных дифференциальных операторов в физике. Несмотря на то, что С содержит единичные векторы i , j и k , его физический смысл не зависит от выбранной системы координат.
Какова связь между Сf и f ? Прежде всего предположим, что f определяет потенциал в любой точке. При любом малом смещении D r величина f изменится на
Если q – величина (например масса, заряд), перемещенная на D r , то работа, выполненная при перемещении q
откуда следует, что E действует в направлении r и его величина равна q /(4pe 0r 3).
Зная скалярное поле, можно определить связанное с ним векторное поле. Также возможно и обратное. С точки зрения математической обработки скалярными полями оперировать легче, чем векторными, так как они задаются одной функцией координат, в то время как векторное поле требует три функции, соответствующие компонентам вектора в трех направлениях. Таким образом, возникает вопрос: дано векторное поле, может ли мы записать связанное с ним скалярное поле?
Дивергенция и ротор.
Мы видели результат действия С на скалярную функцию. Что произойдет, если С применить к вектору? Имеются две возможности: пусть U n a da D
если D A ® 0. Это выражение максимально, когда k и rotU указывают в одном и том же направлении; это означает, что rotU – вектор, равный удвоенной угловой скорости жидкости в точке P . Если жидкость вращается относительно P, то rotU № 0, и векторы U будут вращаться вокруг P . Отсюда и возникло название ротора.
Теорема дивергенции (теорема Остроградского – Гаусса)
Теорема дивергенции (теорема Остроградского – Гаусса) является обобщением формулы (4) для конечных объемов. Она утверждает, что для некоторого объема V , ограниченного замкнутой поверхностью S ,
и справедлива для всех непрерывных векторных функций U , имеющих непрерывные первые производные всюду в V и на S . Мы не будем приводить здесь доказательство этой теоремы, но ее справедливость можно понять интуитивно, представляя объем V разделенным на ячейки. Поток U через поверхность, общую для двух ячеек обращается в нуль, и только ячейки, находящиеся на границе S внесут вклад в поверхностный интеграл.
Теорема Стокса
является обобщением уравнения (6) для конечных поверхностей. Она утверждает, что
где C – замкнутая кривая и S – любая поверхность, ограниченная этой кривой. U и ее первые производные должны быть непрерывны всюду на S и C .
Вектором называется направленный отрезок прямой евклидова пространства, у которого один конец (точка A) называется началом вектора, а другой конец (точка B) концом вектора (Рис. 1). Векторы обозначаются:
Если начало и конец вектора совпадают, то вектор называется нулевым вектором и обозначается 0 .
Пример. Пусть в двухмерном пространстве начало вектора имеет координаты A (12,6) , а конец вектора - координаты B (12,6). Тогда вектор является нулевым вектором.
Длина отрезка AB называется модулем (длиной , нормой ) вектора и обозначается |a |. Вектор длины, равной единице, называется единичным вектором . Кроме модуля вектор характеризуется направлением: вектор имеет направление от A к B . Вектор называется вектором, противоположным вектору .
Два вектора называются коллинеарными , если они лежат на одной прямой или на параллельных прямых. На рисунке Рис. 3 красные векторы коллинеарны, т.к. они лажат на одной прямой, а синие векторы коллинеарны, т.к. они лежат на параллельных прямых. Два коллинеарных вектора называются одинаково направленными , если их концы лежат по одну сторону от прямой, соединяющей их начала. Два коллинеарных вектора называются противоположно направленными , если их концы лежат по разные стороны от прямой, соединяющей их начала. Если два коллинеарных вектора лежат на одной прямой, то они называются одинаково направленными, если один из лучей, образованным одним вектором полностью содержит луч, образованным другим вектором. В противном случае векторы называются противоположно направленными. На рисунке Рис.3 синие векторы одинаково направлены, а красные векторы противоположно направлены.
Два вектора называются равными если они имеют равные модули и одинаково направлены. На рисунке Рис.2 векторы равны т.к. их модули равны и имеют одинаковое направление.
Векторы называются компланарными , если они лежат на одной плоскости или в параллельных плоскостях.
В n мерном векторном пространстве рассмотрим множество всех векторов, начальная точка которых совпадает с началом координат. Тогда вектор можно записать в следующем виде:
(1) |
где x 1 , x 2 , ..., x n координаты конечной точки вектора x .
Вектор, записанный в виде (1) называется вектор-строкой , а вектор, записанный в виде
(2) |
называется вектор-столбцом .
Число n
называется размерностью
(порядком
) вектора. Если то вектор называется нулевым вектором
(т.к. начальная точка вектора
). Два вектора x
и y
равны тогда и только тогда, когда равны их соответствующие элементы.
ОПРЕДЕЛЕНИЕ
Вектор (от лат. «vector » – «несущий») – направленный отрезок прямой в пространстве или на плоскости.
Графически вектор изображается в виде направленного отрезка прямой определенной длины. Вектор, начало которого находится в точке , а конец – в точке , обозначается как (рис. 1). Также вектор можно обозначать одной маленькой буквой, например, .
Если в пространстве задана система координат, то вектор можно однозначно задать набором своих координат. То есть под вектором понимается объект, который имеет величину (длину), направление и точку приложения (начало вектора).
Начала векторного исчисления появились в работах в 1831 году в работах немецкого математика, механика, физика, астронома и геодезиста Иоганна Карла Фридриха Гаусса (1777-1855). Работы, посвященные операциям с векторами, опубликовал ирландский математик, механик и физик-теоретик, сэр Уильям Роуэн Гамильтон (1805-1865) в рамках своего кватернионного исчисления. Ученый предложил термин «вектор» и описал некоторые операции над векторами. Векторное исчисление получило свое дальнейшее развитие благодаря работам по электромагнетизму британского физика, математика и механика Джеймса Клерка Максвелла (1831-1879). В 1880-х годах увидела свет книга «Элементы векторного анализа» американского физика, физикохимика, математика и механика Джозайя Уилларда Гиббса (1839-1903). Современный векторный анализ был описан в 1903 году в работах английского ученого-самоучки, инженера, математика и физика Оливера Хевисайда (1850-1925).
ОПРЕДЕЛЕНИЕ
Длиной или модулем вектора называется длина направленного отрезка, определяющего вектор. Обозначается как .
Основные виды векторов
Нулевым вектором называется вектор , у которого начальная точка и конечная точка совпадают. Длина нулевого вектора равна нулю.
Вектора, параллельные одной прямой или лежащие на одной прямой, называют коллинеарными (рис. 2).
сонаправленными , если их направления совпадают.
На рисунке 2 – это векторы и . Сонаправленность векторов обозначается следующим образом: .
Два коллинеарных вектора называются противоположно направленными , если их направления противоположны.
На рисунке 3 – это векторы и . Обозначение: .
Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.
Значение слова вектор
вектор в словаре кроссвордиста
Словарь медицинских терминов
Толковый словарь русского языка. С.И.Ожегов, Н.Ю.Шведова.
вектор
А, м. (спец.). Изображаемая отрезком прямой математическая величина, характеризующаяся численным значением и направлением.
прил. векторный, -ая, -ое. Векторное исчисление (математическая дисциплина).
Новый толково-словообразовательный словарь русского языка, Т. Ф. Ефремова.
вектор
м. Отрезок прямой, характеризующийся численным значением и определенной направленностью.
Энциклопедический словарь, 1998 г.
вектор
ВЕКТОР (от лат. vector - несущий) отрезок определенной длины и направления. Обычно вектор обозначается буквой a или (первая буква - начало, вторая - конец отрезка); абсолютная величина (длина) вектора записывается |a| либо. Два вектора равны лишь в том случае, если у них одинаковы длины и совпадают направления (т.е. они параллельны и одинаково ориентированы). С изменением ориентации меняется знак вектора. Векторы изображают т.н. векторные величины: силу, скорость, ускорение и т.д. Действия над вектором изучают в векторном исчислении.
вектор
ВЕКТОР в молекулярной генетике самостоятельно реплицирующаяся молекула ДНК, способная включать чужеродную ДНК (гены) и переносить ее в клетки, наследственные свойства которых желают изменить. Обычно вектор создают на основе ДНК плазмид и вирусов (в т.ч. бактериофагов). Вектор широко используют в генетической инженерии для размножения (клонирования) введенных генов или получения кодируемых этими генами белковых продуктов.
Вектор
(от лат. vector, буквально ≈ несущий, перевозящий), в геометрическом смысле ≈ направленный отрезок, то есть отрезок, у которого указаны начало (называемое также точкой приложения В.) и конец. Для обозначения В. используются либо жирные латинские буквы а, b, либо буквы обычного алфавита с чёрточками или стрелками наверху:
В., имеющий начало в точке А и конец в точке В, обозначается. Прямая, на которой расположен В., называется линией действия данного В.
Понятие В. возникло в связи с изучением величин, характеризуемых численным значением и направленностью (например, перемещение, скорость и ускорение движущейся материальной точки, действующая на неё сила и т.п.). В механике и физике рассматривают свободные, скользящие и связанные В. Вектор называется свободным, если его значение не меняется при произвольном параллельном переносе. Свободным В. является, например, скорость движения материальной точки. В. называется скользящим, если его значение не меняется при любом параллельном переносе вдоль линии его действия. Примером скользящего В. может служить сила, действующая на абсолютно твёрдое тело (две равные и расположенные на одной прямой силы оказывают на абсолютно твёрдое тело одинаковое воздействие). В. называется связанным, если фиксировано его начало. Например, сила, приложенная к некоторой точке упругого тела, представляет собой связанный В. Свойства свободных В. изучаются средствами векторной алгебры (см. Векторное исчисление). Общее понятие В. как элемента, так называемого, векторного пространства определяется аксиоматически.
Лит.: Ильин В. А., Позняк Э. Г., Аналитическая геометрия, М., 1968.
Э. Г. Позняк.
Википедия
Вектор
Ве́ктор .
Вектор (математика)
Ве́ктор - в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве.
Примеры: радиус-вектор , скорость , момент силы . Если в пространстве задана система координат, то вектор однозначно задаётся набором своих координат. Поэтому в математике, информатике и других науках упорядоченный набор чисел часто тоже называют вектором. В более общем смысле вектор в математике рассматривается как элемент некоторого векторного пространства.
Является одним из основополагающих понятий линейной алгебры. При использовании наиболее общего определения векторами оказываются практически все изучаемые в линейной алгебре объекты, в том числе матрицы, тензоры, однако, при наличии в окружающем контексте этих объектов, под вектором понимаются соответственно вектор-строка или вектор-столбец, тензор первого ранга. Свойства операций над векторами изучаются в векторном исчислении.
Вектор (геометрия)
вектор - направленный отрезок прямой, то есть отрезок, для которого указано, какая из его граничных точек является началом, а какая - концом.
Вектор с началом в точке A и концом в точке B принято обозначать как $\overrightarrow{AB}$. Векторы также могут обозначаться малыми латинскими буквами со стрелкой над ними, например a⃗ . Другой распространённый способ записи: выделение символа вектора жирным шрифтом: a .
Вектор в геометрии естественно сопоставляется переносу (параллельному переносу), что, очевидно, проясняет происхождение его названия (, несущий ). Действительно, каждый направленный отрезок однозначно определяет собой какой-то параллельный перенос плоскости или пространства: скажем, вектор $\overrightarrow{AB}$ естественно определяет перенос, при котором точка A перейдет в точку B , также и обратно, параллельный перенос, при котором A переходит в B , определяет собой единственный направленный отрезок $\overrightarrow{AB}$ (единственный - если считать равными все направленные отрезки одинакового направления и длины - то есть рассматривать их как свободные векторы; действительно, при параллельном переносе все точки смещаются в одинаковом направлении на одинаковое расстояние, так что в таком понимании $\overrightarrow{A_1B_1} = \overrightarrow{A_2B_2} = \overrightarrow{A_3B_3} =\dots$).
Интерпретация вектора как переноса позволяет естественным и интуитивно очевидным способом ввести операцию сложения векторов - как композиции переносов; то же касается и операции умножения вектора на число.
Вектор (молекулярная биология)
Вектор (в генетике ) - молекула нуклеиновой кислоты, чаще всего ДНК, используемая в генетической инженерии для передачи генетического материала другой клетке.
Существующие векторы:
- фазмиды
- векторы на основе вируса SV40
- векторы на основе аденовирусов
- векторы на основе герпесвирусов
- векторы на основе ретровирусов
- векторы на основе аденоассоциированного вируса
Вектор (завод)
АО «Уральское производственное предприятие „Вектор“» - военное предприятие, специализирующееся на производстве аппаратуры связи, товаров народного потребления и производственно технического назначения. Располагается в Екатеринбурге. Входит в состав концерна ПВО «Алмаз-Антей» .
Организовано в 1941 году на базе эвакуированного в Свердловск московского завода «Геодезия».
Первое время носил название завод № 356, в 1966-1992 - Свердловский завод электроавтоматики.
В 2002 году федеральное государственное унитарное предприятие «Вектор» по Указу Президента РФ и решению министерства по управлению государственным имуществом Свердловской области было преобразовано в ОАО «Уральское производственное предприятие „Вектор“», 100 % акций которого остались в собственности государства.
«Вектор» в течение 15 лет был монополистом в выпуске отечественных электромузыкальных инструментов и звукоусилительной аппаратуры. 1.
Предприятие награждено орденом Трудового Красного Знамени в 1966 году за успехи, достигнутые в выполнении заданий семилетки.
Вектор (научный центр)
ГНЦ ВБ «Ве́ктор» - один из крупнейших научных вирусологических и биотехнологических центров России, расположенный в наукограде Кольцово Новосибирской области, в нескольких километрах от Новосибирска. Градообразующее предприятие, вокруг которого появился нынешний Наукоград р.п. Кольцово.
Полное название центра - Федеральное бюджетное учреждение науки «Государственный научный центр вирусологии и биотехнологии „Вектор“» Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека .
В качестве миссии Центра провозглашено «научное и практическое обеспечение противодействия глобальным инфекционным угрозам ». В ГНЦ ВБ «Вектор» проводятся фундаментальные научно-исследовательские работы в области эпидемиологии, молекулярной биологии, вирусологии, бактериологии, генной инженерии, биотехнологии, экологии и биологической безопасности.
В состав Центра входит филиал - Институт медицинской биотехнологии, расположенный в Бердске.
Примеры употребления слова вектор в литературе.
У всех наций есть биологическое чувство заполненности ареала, проявляющееся в каждой особи нации, и потому можно говорить о биологическом поле нации, а значит, и о векторе этого поля - соответственно в каждой особи.
То есть я допускаю, конечно, вероятие смены вектора влюбленности у Сибура, но это, к сожалению, произойдет не в следующий раз.
Но - только при условии, что глиссадная планка в центре, а значит, самолет движется по гипотенузе, и все законы сложения векторов действуют.
Что вектор функции простого числа будет индивидуализирующей функцией поля комплексных чисел, значениями которой будут инвариантные формы, инварианты, референты, произведения, деления, возведения в степень комплексных чисел, квартерионов, логикой которых является инвариантность тех же действий над комплексными числами, как сама возможность действий с комплексными числами, модальность, объектом которой является квант, понятие которого и есть условие равенства нулю потока квартерионов.
В прошлом мускатный орех давали истеричкам, и испытания на удивление подтвердили вектор действия этого средства.
Видите ли, согласно моим расчетам, положение этой нитки в пространстве в каждый момент времени представляет собой вектор , коллинеарный касательной к кривой перемещения моего центра массы по коридору отделения 1Б.
Свободно падаю или принудительно возношусь к вершинам - куда собственно направлен вектор моей конвертной деятельности?
Мозг Либби почти автоматически начал работать над невероятно сложной проблемой соотношения ускорений, интервалов, векторов движения.
Значит, определив географические координаты изучаемой породы и направление вектора намагниченности, можно узнать, где находился магнитный полюс Земли в то время, когда порода застывала.
Полевой штаб Третьего Гвардейского, принца Дэвиона, полка Космопорт Данкельда Гленгарри, маршрутный вектор Скаи Федеративное Содружество Расчетное время 1314 13 мая 3057 года Внутри большого шагающего вездехода, где помещался полевой штаб Третьего Гвардейского полка, как всегда, было сумрачно и тихо, разве что стрекотание аппаратов связи, пиканье и гул электронных приборов, слабое посвечивание мониторов, сигналы вызовов да негромкие голоса, доносящиеся из динамиков, служили неким фоном, на котором особенно отчетливо раздавался грохот близкой битвы.
На глазах у Жанель прочерченный от ракеты вектор , указывающий точку прицеливания, взял направление точно на вражеское судно.
А какой-нибудь просвещённый академик или художник вектором стяжательства в жизненного благоразумия направлен как раз наоборот - назад, в привычную багровую тьму этого полувека.
Что обеспечивает подъемную силу и энергию переноса, ведь не по ветру же он идет, ведь не секрет, что вектор сдува, насколько можно судить по запоздало включенной статистике, никогда до сих пор не был ориентирован внутрь страны, и поэтому некоторые идеологи уже вещали с видимой доказательностью, будто славянство сгенерировало наконец некое особой компрессии очистное биополе, вытесняющее на задворки мира всех изнеженных, тонкокожих и нервных полукровок.
Как вы понимаете, я имею в виду скалярную величину скорости, поскольку при беге по окружности вектор постоянно меняется.
Затем следует поместить адрес первого байта данных в вектор прерывания.